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This thesis addresses three deficiencies in the NPSNET simulated world. First, although a full set of algorithms
have been defined for Dead Reckoning (DR) entities in a distributed simulation, NPSNET only implements a few simple linear
algorithms. Second, NPSNET lacks a set of physically-based models for munition trajectories having, currently, only
algorithms for the bullet and bomb. Third, NPSNET lacks physically-based models for engine power curves using, instead, a
simple linear approximation.

The purpose of this thesis work is to implement an object-oriented programming toolkit which corrects these
deficiencies. The code, in C++, utilizes class hierarchies. The toolkit implements the nine class hierarchies of DR algorithms
described by the Advanced Research Projects Agency for the Distributed Interactive Simulation standard. The toolkit also
provides treatment of a physically-based class hierarchy for munitions trajectories. In addition, a physically-based,
mathematical model for the engines class was implemented.

As a result, a set of DR algorithms have been built to predict the position of simulated entities in all cases. The
munitions class implements trajectories for a variety of projectiles. With this arsenal, future versions of NPSNET will be more
realistic. The engine class, with new mathematical models, far more realistically represents engine behaviors than the current
linear approximation. In summation, the implementation of this toolkit dovetails very well with the needs of NPSNET, and will
be integrated into future releases.

 DIS, Simulation, Virtual World, Virtual Environment, Munition, Engine
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ABSTRACT

This thesis addresses three deficiencies in the NPSNET simulated world. First,

although a full set of algorithms have been defined for Dead Reckoning (DR) entities in a

distributed simulation, NPSNET only implements a few simple linear algorithms. Second,

NPSNET lacks a set of physically-based models for munition trajectories having, currently,

only algorithms for the bullet and bomb. Third, NPSNET lacks physically-based models

for engine power curves using, instead, a simple linear approximation.

The purpose of this thesis work is to implement an object-oriented programming

toolkit which corrects these deficiencies. The code, in C++, utilizes class hierarchies. The

toolkit implements the nine class hierarchies of DR algorithms described by the Advanced

Research Projects Agency for the Distributed Interactive Simulation standard. The toolkit

also provides treatment of a physically-based class hierarchy for munitions trajectories. In

addition, a physically-based, mathematical model for the engines class was implemented.

As a result, a set of DR algorithms have been built to predict the position of

simulated entities in all cases. The munitions class implements trajectories for a variety of

projectiles. With this arsenal, future versions of NPSNET will be more realistic. The engine

class, with new mathematical models, far more realistically represents engine behaviors

than the current linear approximation. In summation, the implementation of this toolkit

dovetails very well with the needs of NPSNET, and will be integrated into future releases.
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I.  INTRODUCTION

A. BACKGROUND

Conventional training and preparation for future military operations is an expensive

and time-consuming process involving many persons and resources. With the current

budgetary constraints and downsizing of the armed forces, ways of doing business must be

revised, but in a way that does not compromise preparedness. Fortunately, with advances

in Computer Science, military operations from battle to replenishment can now be

simulated on computers, and personnel can complete many phases of training in simulated

battlefields, thus mitigating the expense of engaging in the real-world environment.

One such simulated battlefield, NPSNET [PRAT93], has been developed by the

Computer Science Department of the Naval Postgraduate School (NPS). NPSNET is a low-

cost, distributed, interactive, virtual 3D world for simulation and training. Personnel in the

simulated environment interact with each other as if they were on a battlefield. They can

virtually fly an airplane, ride a tank, walk, run, and shoot at each other.

NPSNET is an evolving system, a test-bed for new research as well as a growing

amalgam of proven ideas. Recently, numerous projects have improved and enhanced

NPSNET. Such works encompass: Configuration Management, Real-time Scene

Management, Terrain Development, Insertion of the Human, Human-Computer Interface,

and Networking. However, NPSNET lacks true physical representation of moving bodies.

Only a few simple cases have been implemented such as linear Dead Reckoning (DR), and

simplified munitions trajectories for the bullet and bomb. Improving the physically-based

aspects of NPSNET is the purpose of this thesis work.

B. PROBLEM STATEMENT

This thesis addresses and resolves three specific deficiencies in the physically-

based representations of NPSNET. The first is dead reckoning (DR). NPSNET uses the

Distributed Interactive Simulation (DIS) protocol, a standard for networked simulators, to
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communicate between entities--aircraft, vehicles, munitions, etc. -- in its environment

[IST93]. Every workstation participating in a simulation, each running NPSNET, shares

the data for the entities it controls, thus allowing each NPSNET to display a consistent view

of the simulated world to its user. Each entity in the environment sends to the network its

velocity, position, and orientation no less frequently than every five seconds. Other objects

receive and render that information within their own workstation. For efficiency and to

conserve network bandwidth, data for an entity is not sent out continually. To keep an

updated picture of networked entities, each workstation dead reckons (predicts) remote

entities’ velocity, position, and orientation based on its last update. Specific dead reckoning

algorithms constitute part of the DIS standard. Currently, NPSNET implements only a few

simple linear world coordinate cases. A full implementation of DR for all vehicle cases in

both world and body coordinates is required.

The second deficiency regards simulation of munitions. In a simulated battle,

continuous simulation of munitions is absolutely essential. Currently in NPSNET, only a

few simple cases of a bullet and a bomb are implemented. A more definitive physically-

based implementation of munitions is required to more closely reflect real-world munitions

behavior.

The third deficiency is engine simulation. To make the virtual world realistic and

plausible to the user, moving objects must reflect the behavior of their real-world

counterparts as much as possible. Currently, NPSNET lacks any engine type. Therefore, a

basic implementation of engines is needed, too.

C. APPROACH

For DR implementation, we use the study of the Advanced Research Projects

Agency (ARPA) for DR algorithms published as part of DIS 2.0.3 [TOWE94]. In this

study, the equations of motion for the DR algorithms are divided into nine groups. The first

group is for a static case. Another four groups are for world coordinates, and the remainder

are for body coordinates. Using the C++ object-oriented programming methodology, this

thesis work implements all nine groups into a class hierarchy.
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The munition implementation is based on Newtonian Mechanics. Most moving

objects in the real world are governed by gravitational forces. Therefore, kinematic

equations with constant downward acceleration are utilized for bullet, bomb, ballistic, and

artillery objects. A physically-based model of a system with lost mass is used for rockets

and missiles. Air drag is omitted.

For engine implementation, we built an abstract input and output system with

general quadratic, logarithmic, and exponential models of acceleration. (A full physically-

based model is beyond the scope of this thesis.)

All of the implemented code is written in C++ with class hierarchies for portability

and reusability. With its class structure and inheritance, C++ minimizes code development

as well as making the program easier to understand.

D. ORGANIZATION

This first chapter introduced NPSNET and discussed the problems addressed by

this thesis. It also described the approach taken to solve each problem.The second chapter

covers the background and previous works impinging on the problems to be solved. The

third chapter describes in detail the implementation of the DR standard. The fourth chapter

recounts the formulas and equations which govern the munition classes. The fifth chapter

describes the implementation of the engine mathematical models and the derived formulas.

The sixth chapter contains the conclusion and presents necessary future work.



4



5

II.  BACKGROUND AND PREVIOUS WORK

A. PREVIOUS WORKS

1.  Dead Reckoning (DR)

Currently, NPSNET implements only a few simple cases of DR where there is no

rotation involved. There are the static case, the two cases of world-coordinates, and the

default case for the rest of the situations, see Figure 1.

The first algorithm applies to a static object when its rotation, velocity, and

acceleration are all zero. The second algorithm applies when object rotation and

acceleration are zero but velocity is not. The third algorithm applies when object rotation

is zero and velocity and acceleration are not. The default case applies when object velocity

is a constant, so that the object moves in a straight line. These four DR cases were

Figure 1: Current NPSNET DR IMPLEMENTATION

Static
Case 1

Case 2

Case 3

r=0, v=0, a=0

r=0, v=x, a=0

r=0, v=x, a=x

r = rotation
v = velocity

a = acceleration
x = some number

Vehicle

moveDR

Default
Case
v=x
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implemented in C++ as special cases in the subclassmoveDR of the Vehicle Class in

NPSNET. Kinematic equations with constant acceleration were used to implement those

cases:

Eq 1

Eq 2

Where:

One of the purposes of DIS, a set of standards developed by ARPA and industry, is

to provide a specification to be used by government agencies and engineers to build

interoperable networked simulation systems [IST93]. DIS defined a need for DR, and

ARPA released its DR algorithms study on February 7, 1994 [TOWE94]. In this study, with

C++ methodology in mind, the algorithms are divided into a general static case and two

large groups, one for the world-coordinates, and the other for body-coordinates. Inside each

large group are four subgroups, each addressing different cases of the moving object in its

respective coordinates, see Figure 2.

vi vio
ai t+=

xi xio
vio

t 0.5ai t
2+ +=

vi respective velocity in each direction=

vio
respective initial velocity in each direction=

xi respective position in each direction=

xio
respective initial position in each direction=

ai respective acceleration of each direction=

t time=
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2.  Munition

In the current version of NPSNET, only a few simple cases of munitions are

implemented, such as a bullet, a bomb, and a simple non-loss-mass missile, see Figure 3.

Equations similar to Eq1 and Eq2 above are used to implement those munitions.

Newtonian Mechanics governs the behavior of objects flying in the air in a constant

gravitational field. Equations that describe motion and kinematics have been developed

ever since Newton presented his greatest discovery (F = ma). Many first-year math and

physics books describe these equations. [MART84][HALL78]

Figure 2: DR algorithms of ARPA’s study

Static

World coord. Body coord.

2

3

4

5

6

7

8

9

1

Figure 3: Current NPSNET munitions implementation

Munition

Bullet Bomb Simple
Missile
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Another relevant work is the NATO study of ballistic missiles [NATO]. It is the

definitive study of the trajectory of a flying mass in the air. It describes all factors

influencing the behavior of flying objects, encompassing drag force, lift force, Magnus

force, and Coriolis force. Most of these equations exceed the scope of this thesis and are

unnecessary for NPSNET, though it could apply to later enhancement work.

3.  Engines

Engine models are not currently incorporated into NPSNET. Presently, NPSNET

uses a simple linear approximation between the user input to a throttle and the speed of the

entity. However, the real world of vehicles encompasses a variety of engine models, such

as motors, gas turbine, piston, and rocket engines. All currently existing engine models

exceed the scope of this thesis, except for the rocket engine. With a few revisions, it follows

the rocket munition model and so is implemented in this thesis work.

B. SUMMARY

In summation, NPSNET lacks complete physically-based models for DR,

munitions, and engines, for accurately representing objects in its virtual world. All DR and

munition models are readily available, and can be implemented. Except for the rocket

engine which can be implemented directly from rocket models, the remaining engine

models need to be abstracted as an input and output system and tested until it seems

plausible in the virtual world.
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III.  DEAD RECKONING

A. OVERVIEW

What is dead reckoning? According to the Random House dictionary, dead

reckoning is the “calculation of one’s position on the basis of distance run on various

headings since the last precisely observed position.” Our usage of the word dead reckoning

in this chapter is exactly the same as the definition.

To allow multiple users in a simulation, we run NPSNET on different workstations

which are all connected by the same network. Each workstation presents a consistent view

of the entire simulated world, rendering both the local objects it controls and the networked

objects controlled by the other simulators. Each simulator transmits the position, velocity,

and orientation for its own local objects, and reads the network for information on remote

objects. This state change data is sent on the network no less frequently than every five

seconds in a packet called, in DIS terminology, a Program Data Unit (PDU). But five

seconds is a long time when the user is watching an entity which is animated on the screen.

The entity cannot jump to a new location every so many seconds and satisfy the appearance

of smooth motion. In-between times, each workstation needs to dead reckon each remote

object’s position, velocity, and orientation and move it smoothly along its probable course,

Figure 4.

PDU PDU
DR DR DR DR

5 seconds

Figure 4: PDU and DR time
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In endeavoring to provide a complete set of DR functionality, this thesis utilizes the

algorithms developed by ARPA for both world and body coordinates. These are

implemented using appropriate C++ classes.

B. DESIGN

In object-oriented languages like C++,inheritance is when a child class inherits the

variables and functions of a parent class. Thus the child class is automatically like its parent

except for the specific ways in which it needs to be different, which makes design and

coding clean and efficient. In Figure 5, each of the nine ellipses represents a class of DR

algorithm. The parent class is the static class. The four classes on the left side of the

structure belong to the world coordinates class, the four on the right belong to the body

coordinates.

The structure in Figure 5 varies a bit from ARPA’s DR study, see Figure 2. As

represented in Figure 2, dead reckoning method four (DRM4) can be derived from either

DRM3 or DRM5; likewise for DRM8, which can be derived from DRM7 or DRM9. But,

in Figure 5, DRM4 is only derived from DRM3, and DRM8 is only derived from DRM7.

Dead Reckoning

DRM2

DRM3 DRM5

DRM4

DRM6

DRM7 DRM9

DRM8

Figure 5: DR classes

Algorithm 1

WORLD COORDINATES BODY COORDINATES

STATIC
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The reason for the variance is to reduce the complications arising from multiple inherited

variables and functions. It is far more straightforward to keep track of all the variables and

functions if each child class derives from a single parent class.

Table 1 lists each DR algorithm in the set. A key to the abbreviations:

B = body coordinate
F = fixed
P = position
R = rotation
V = velocity
W = word coordinate

For example, the fourth row indicates that algorithm DRM4 has rotation, velocity,

and belongs to the world coordinates subclass. Its roll, pitch, yaw (orientation), velocity,

and acceleration are equal to some number.

Furthermore, in the representation DRM(X,Y,Z), X represents for the rotation of

the entity, Y represent for position, and Z represent for coordinate.

Number Name Roll Pitch Yaw Vel Acc

1 Static 0 0 0 0 0

2 DRM2(F,P,W) 0 0 0 v 0

3 DRM3(R,P,W) roll pitch yaw v 0

4 DRM4(R,V,W) roll pitch yaw v a

5 DRM5(F,V,W) 0 0 0 v a

6 DRM6(F,P,B) 0 0 0 v 0

7 DRM7(R,P,B) roll pitch yaw v 0

8 DRM8(R,V,B) roll pitch yaw v a

9 DRM9(R,V,B) 0 0 0 v a

Table 1.   DR Algorithms
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C. IMPLEMENTATION

1.  Static class (DRM1)

This is the parent class for all other DR classes. Its rotation, velocity, and

acceleration are all zero, so its position is fixed. To use it, we simply instantiate an object

and set its position to given values. In this case, we always get back the same initial value,

when we call for updated position.

2.  World-coordinates (DRM2-5) classes

The input to all the algorithms are:

The outputs are:

(1)   DRM2

In this algorithm, r = 0, v = x, and a = 0. We use the Eq3 and Eq4 to compute

the object velocity and position at time . Euler angles at time delta

 are the same as its initial time

 because there is no rotation involved.

Xw to 
  position vector in world coordinates at initial time.=

Vw to 
  velocity vector in world coordinates at initial time.=

Aw acceleration vector in world coordinates.=

ψ to( ) θ to( ) φ to( ),,( ) Euler angles at initial time.=

ω ω
x

ω
y

, ω
z

, 
  T ω

1
ω

2
, ω

3
, 

  T angular velocity in body coordinates.= = =

∆t time increment for dead reckoning step.=

Xw to ∆t+ 
  position vector in world coordinates after time delta.=

Vw to ∆t+ 
  velocity vector in world coordinates after time delta.=

ψ to ∆t+ 
  θ to ∆t+ 

 , φ to ∆t+ 
 , 

  Euler angles after time delta.=

to ∆t+

ψ to ∆t+ 
  θ to ∆t+ 

 , φ to ∆t+ 
 , 

 

ψ to 
  θ to 

 , φ to 
 , 

 
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Eq 3

Eq 4

(2)   DRM3

In this algorithm, r = x, v = x, and a = 0. We can get velocity and position at

time  by Eq3 and Eq4, and the steps to get Euler angles at time  are as

follows:

Step 1: Use the initial Euler angles  to compute the rotations

matrix  which takes world coordinates into body coordinates at time . The

formula for  is

Eq 5

Where c = cosine and s = sine.

Step 2: Compute the rotation matrix  which takes body

coordinates at time  into body coordinates at time .

Eq 6

Where:

Eq 7

The matrix I is the 3x3 identity matrix having 1’s on the main diagonal and 0’s off

of the main diagonal. The matrix  is

Vw to ∆t+ 
  Vw to 

  ∆tAw+=

Xw to ∆t+ 
  Xw to 

  ∆tVw to 
  1

2
---∆t2Aw+ +=

to ∆t+ to ∆t+

ψ to( ) θ to( ), φ to( ),( )

U b to( ) w( ) to

U b to( ) w( )

U b t
o 

  w
 
 

c ψ( ) c θ( ) s ψ( ) c θ( ) s– θ( )
s– ψ( ) c φ( ) s φ( ) s θ( ) c ψ( )+ c φ( ) c ψ( ) s φ( ) s θ( ) s ψ( )+ s φ( ) c θ( )
s φ( ) s ψ( ) c φ( ) s θ( ) c ψ( )+ s– φ( ) c ψ( ) c φ( ) c θ( ) s ψ( )+ c φ( ) c θ( )

=

U b to ∆t+( ) b to( )( )

to to ∆t+

U b to ∆t+ 
  b to 

 
 
  1 ω ∆t( )cos–( )

ω 2
--------------------------------------------ωωT ω ∆t( )cos I

ω ∆t( )sin
ω

---------------------------Ω–+=

Ω
0 ω3– ω2

ω3 0 ω1–

ω2– ω1 0

=

ωωT
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Eq 8

and the magnitude of  is

Eq 9

Step 3: Compute the rotation matrix  which takes world

coordinates into body coordinates at time .

Eq 10

Step 4: Compute the Euler angles  after the

time increment using the rotation matrix . The rotation matrix

 has the form:

Eq 11

Where the entries  are functions of the Euler angles

 as shown in the matrix displayed in Step 3 above.

Step 5: The Euler angle  is recovered via

Eq 12

If  and  do not both equal zero, the Euler angle  is recovered via

Eq 13

ωωT

ω1ω1 ω1ω
2

ω1ω
3

ω2ω
1

ω2ω2 ω2ω
3

ω3ω
1

ω3ω
2

ω3ω3

=

ω

ω ω1
2 ω2

2 ω3
2+ +( ) 1 2/=

U b to ∆t+( ) w( )

to ∆t+

U b to ∆t+( ) w( ) U b to ∆t+( ) b to( )( ) U b to( ) w( )⋅=

ψto ∆t+ ) θ to ∆t+( ), φ to ∆t+( ),( )

U b to ∆t+( ) w( )

U b to ∆t+( ) w( )

U b to ∆t+( ) w( )
U11 U12 U13

U21 U22 U23

U31 U32 U33

=

Uij

ψ to ∆t+( ) θ to ∆t+( ), φ to ∆t+( ),( )

θ

θ U13( )asin–
π–
2

------ π
2
---,∈=

U11 U12
ψ

ψ Arg U11 U12,( ) π– π,[ ]∈=
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Where the function Arg(x,y) is an argument of the complex number x + yi, the

particular branch of the argument chosen to lie in the interval .

If  and  do not both vanish, the Euler angle  is recovered via

Eq 14

The exceptional cases occur when  or . In that case, the Euler angles

 and  are recovered via

Eq 15

Eq 16

(1)   DRM4

In this algorithm, r = x, v = x, and a = x. Position, velocity, and orientation

are computed much the same as DRM3 but with the addition of acceleration .

(3)   DRM5

In this algorithm, r = 0, v = x, and a = x. We can use Eq3 and Eq4 above to

compute its position and velocity. DRM5 lacks rotation so we do not require equations Eq5

through Eq16. Its orientation is fixed.

3.  Body-coordinates (DRM6-9) classes

The input to all the algorithms are:

π– π,[ ]

U23 U33
φ

φ Arg U33 U23,( )=

θ π 2⁄= π– 2⁄

ψ φ

ψ 0=

φ Arg U22 U– 32,( )=

Aw

Xw to( ) position vector in world coordinates at initial time.=

Vb to( ) velocity vector in body coordinates at initial time.=

Ab time derivative ofVb=

ψ to( ) θ to( ) φ to( ),,( ) Euler angles at initial time.=

ω ω
x

ω
y

, ω
z

, 
  T ω

1
ω

2
, ω

3
, 

  T angular velocity in body coordinates.= = =

∆t time increment for dead reckoning step.=
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The outputs are:

(4)   DRM6

In this algorithm, r = 0, v = x, and a = 0. We can compute the velocity and

position at  with Eq17 and 18, ignoring second terms on the right of both equations

because they are zero. The Euler angles at time  is the same as its initial condition

, because there is no rotation involved.

Eq 17

Eq 18

Eq 19

 +

Eq 20

Computing  and  is the same as in Eq9 and Eq7, and  is the

transposition of the matrix  above. See Eq5.

Xw to ∆t+ 
  position vector in world coordinates after time delta.=

Vb to ∆t+ 
  velocity vector in body coordinates after time delta.=

ψ to ∆t+ 
  θ to ∆t+ 

 , φ to ∆t+ 
 , 

  Euler angles after time delta.=

to ∆t+

to ∆t+

ψ to( ) θ to( ), φ to( ),( )

Vb to ∆t+ 
  Vb to 

  ∆tAb+=

Xw to ∆t+ 
  Xw to 

  U w b to 
 

 
  eτΩ τd

0
∆t∫ Vb to 

  τeτΩ τd
0
∆t∫ Ab+ 

 +=

eτΩ τd
0
∆t∫ ω ∆t ω ∆t( )sin–

ω 3
-----------------------------------------------ωωT ω ∆t( )sin

ω
---------------------------I

1 ω ∆t( )cos–
ω 2

-------------------------------------Ω+ +=

τeτΩ τd
0
∆t∫

1
2
--- ω 2∆t2 ω ∆t( )cos ω ∆t ω ∆t( )sin–– 1+

ω 4
-----------------------------------------------------------------------------------------------------------------ωωT=

ω ∆t( )cos ω ∆t ω ∆t( )sin 1–+
ω 2

-------------------------------------------------------------------------------------I
ω ∆t( )sin ω ∆t ω ∆t( )cos–

ω 3
----------------------------------------------------------------------------Ω+

ω Ω U w b to 
 

 
 

U b to( ) w( )
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The following steps are used to calculate Euler angles

 at time .

Step 1: Compute the rotation matrix  which takes body

coordinates at time  into body coordinates at time , the same as Eq 6.

Step 2: Compute the rotation matrix  which takes world

coordinates into body coordinates at time  as Eq 10.

Step 3: Compute the Euler angles  after the

time increment using the rotation matrix , same as the Step 4 in the

world coordinates.

(5)   DRM7

In this algorithm, r = x, v = x, a = 0. We can compute the velocity, position,

and Euler angles at  with Eq3, Eq4, and Steps 1 to 3.

(1)   DRM8

The steps to compute the outputs for this algorithm, where r = x, v = x, and

a =x, are the same as the steps of DRM7 with the exception that a is not zero.

(6)   DRM9

In this algorithm, r = 0, v =x, and a =x. The steps to get the outputs are the

same as DRM6 with a not equal to that zero. The only thing changes in this algorithm is

that the second term on the right of Eq17 is not zero.

D. RESULTS

With the organization afforded by the C++ class hierarchy, the coding and testing

procedures for DR classes are segregated into separate, discrete units. The debugging

process for each implemented algorithm was very simple. For each case, the code was

tested, as suggested in Figure 4, as follows (see code in Appendix A for details):

ψ to ∆t+( ) θ to ∆t+( ), φ to ∆t+( ),( ) to ∆t+

U b to ∆t+( ) to( )( )

to to ∆t+

U b to ∆t+( ) w( )

to ∆t+

ψ to ∆t+( ) θ to ∆t+( ), φ to ∆t+( ),( )

U b to ∆t+( ) w( )

to ∆t+
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a. Instantiate an object of that case.

b. Call procedureupdate_DR to set the object to its “real” values (as the information

is obtained from incoming PDUs).

c. Intermittently call move_DR to compute the predicted position, velocity, and

angular position of the object.

d. Repeat step c. at the desired interval until the next PDU arrives with real data for

the object, then repeat step b.

The code is extremely reliable, and its performance very quick, even when tested

on a low-end Intel 80486-based PC. To illustrate test results, the following Tables 2 and 3

list the input and output tested cases for algorithms DRM4 and DRM8. They are the two

most complex cases in the DR classes.

Initial Conditions x y z

Position - m -6378137 -5 -10

Velocity- m/sec 30 35 40

Acceleration - m/sec*sec -80 -85 -90

Orientation - deg 15 20 25

Rotation Rate - deg/sec 60 65 70

Final Results

Position - m -6378132.00 1.88 -1.25

Velocity - m/sec -10.00 -7.50 -5.00

Orientation - deg 64.32 14.84 72.50

Table 2.   Test of DR algorithm 4, Delta time is 0.5 sec
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Following Table 4 is a time performance data comparison between this thesis’s

code implementation in C++ and ARPA’s study code implementation in C. Those

implementations were run on different platforms to test the consistency and time usage of

the code.

Initial conditions x y z

Position - m 6378137 5 10

Velocity - m/sec 30 35 40

Acceleration - m/sec*sec -80 -85 -90

Orientation - deg 15 20 25

Rotation Rate - deg/sec -60 -65 -70

Final Results

Position - m 6378144.0
3

10.46 18.32

Velocity - m/sec -10.00 -7.50 -5.00

Orientation - deg -23.07 -8.68 -10.86

Table 3.   Test of DR algorithm 8, delta time is 0.5 sec

DRM ARPA’s study
SGI Indigo 2

100MHz

ARPA’s study
SGI Indigo 2

150MHz

Thesis
Implementation

SGI Indigo 2
150MHz

Thesis
Implementation

SGI Indigo 2
150MHz

Optimized

Thesis
Implementation

486DLC
33MHz

1 1.9 usec 1.3 usec 0.08 usec 0.08 usec 7 usec

2 3.8 usec 2.6 usec 0.96 usec 0.40 usec 45 usec

3 55 usec 30 usec 35.20 usec 26.32 usec 900 usec

4 57 usec 30 usec 36.64 usec 26.69 usec 980 usec

5 5.9 usec 4.0 usec 2.08 usec 1.12 usec 7 usec

6 20 usec 11 usec 0.24 usec 0.16 usec 20 usec

7 63 usec 33 usec 51.60 usec 34.56 usec 1400 usec

8 71 usec 38 usec 56.84 usec 44.20 usec 1900 usec

9 22 usec 13 usec 0.88 usec 0.40 usec 50 usec

Table 4.   Performance Data
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Observe that the trend of the times spent on computation were similar in all cases

and different platforms. Without optimization in compiling, this thesis implementation ran

fast in the simple cases of algorithms 1, 2, 5, 6, and 9, but slow in the complicated cases of

3, 4, 7, and 8. Using compilation optimization (with the flag “-O3 -mips2”), and

considering the lower overhead resulting from putting each class into its own file, most of

the cases ran faster than the ARPA’s study code. However, in the complex case of

algorithm 8, our code ran a little slower due to redundant matrix multiplication in

computing angular position. The speed of the 486DLC 33Mhz CPU is about three times

slower than the Intel 486DX2 66MHz CPU.

In summation, the code for each of the DR algorithms works as designed, and has

been implemented in the current NPSNET. NPSNET thus takes an important step forward

in DIS-compliance. NPSNET can move networked entities from disparate simulators

following any of the DR algorithms those entities specify.
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IV.  MUNITIONS

A. OVERVIEW

One of the goals of simulation is to make the virtual world resemble the real world

as closely as possible. This chapter describes an extensive munitions class, built so that

NPSNET programmers can enhance and improve the physically-based representation of

munitions in NPSNET. The class incorporates the mathematics that will allow various

munitions to follow realistic trajectories in the simulated world.

The kinematic equations  and  calculate velocity

and position for most of the munitions, thus forming the core of the base class. Orientation

of the munition is derived from its current velocity vector. Implementation of the

subclasses of the base class is straightforward from those equations, except for the rocket

model which involves a second order differential equation.

B. DESIGN

The munition class is the base class containing all the common variables and

functions for its subclasses, see Figure 6. The equations that govern the velocity and

position of the bullet, bomb, and ballistic subclasses are much the same. In the artillery

class, though, we find the artillery’s necessary initial velocity first, then it uses the same

equation as its parent class--bomb/ballistic--to find its velocity and position at a later time.

The rocket subclass is totally different from its peers. Its velocity and position are governed

by a different set of complex equations. The approach to compute the velocity and position

of the ballistic missile class is the same as for the artillery class. That is, its initial conditions

are determined before using the rocket’s velocity and position functions to find its velocity

and position at a later time.

The guided missile seeks and destroys its target. It is a subclass of the base class.

Incorporated with the engine class, its trajectory can be further refined by factoring in the

power curve as it is affected by user input. As examples, in one case the missile may couple

v vo at+= x xo vot 0.5at2+ +=
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with a constant speed curve to chase after the target, while in another it couples with the

quadratic engine speed equation.

C. IMPLEMENTATION

1.  Orientation

The orientation of the munition is converted from its velocity vector, a function

residing in the munition base class. The function takes a velocity vector and returns angular

position in degrees, the values commonly used by graphics software. This function checks

all eight cases of given (x, y, z) values, and then used inverse tangent or direct assignment

to assign appropriate angular position for each direction.

For example, if the input vector is (x, y, z) then:

Eq 21

Eq 22

Eq 23

Where r_to_d is the factor to change from radian to degrees. If the input vector is

(0, y, z) then:

Bullet Bomb/ballistic Rocket

Munition

Guided Missile

Artillery

Figure 6: Munition class structure

Ballistic missile

θx r_to_d x
y
--atan⋅=

θ
y

r_to_d y
x
--atan⋅=

θ
z

r_to_d z
x
--atan⋅=
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Eq 24

Eq 25

Eq 26

2.  Bullet

A bullet is a small projectile fired from small arms. To simulate its path, we use

equations Eq 27 through Eq 32. The gravity constant is set to one or zero to implement the

bullet with or without the effect of gravity, see Figure 7 and equations Eq 27 through Eq 32.

Inputs:

 initial velocity in the respective direction.

 initial position in the respective direction.

Outputs:

 velocity at time t in the respective direction.

 position at time t in the respective direction.

 angular position at time t in the respective direction.

The following equations Eq 27 through Eq 29 describe the velocity of the bullet.

Velocity in the x and y axes of the horizontal plane will not change from the initial state

θx 90=

θy r_to_d y
z
--atan⋅=

θz r_to_d z
y
--atan⋅=

bullet path without gravity

bullet path with gravity

Figure 7: Bullet path

vio

xio

vi t( )

xi t( )

ωi t( )
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because there is no significant force acting on it. We omit the air drag and wind effects,

which are negligible. Gravitational force acts upon the z direction.

Eq 27

Eq 28

Eq 29

The following equations Eq 30 through Eq 32 describe the position of the bullet.

Position, at any time, is based on initial position and initial velocity. In the z direction, the

bullet drops due to gravitational force.

Eq 30

Eq 31

Eq 32

3.  Bomb

Typically, a bomb is dropped from a flying object. Due to gravity, it descends from

its initial position and accelerates toward the surface of the earth. Its path, normally, is a

parabola, Figure 8. The equations governing its velocity and position are much the same as

the equations for the bullet, Eq 27 through Eq 32. Inputs and outputs are the same as for the

bullet class above.

Together with Eq 21 and Eq 22, the following equation describes the velocity of the

bomb.

vx vxo
=

vy vyo
=

vz vzo
gt gravity⋅–=

xx xxo
vxo

t+=

xy xyo
vyo

t+=

xz xzo
vzo

t 0.5gt2 gravity⋅–+=



25

Eq 33

Together with Eq 30and Eq 31, the following equation describes the position of the

bomb.

Eq 34

These equations are the same as Eq 27 through Eq 32. The difference is the

“gravity” constant of Eq 29 and Eq 32 is omitted, since bombs are always dropped from

high above the surface where gravitational force always applies.

4.  Ballistic

Ballistic behavior applies to projectiles, like an artillery round, which are shot not

directly at the target, but along a parabola whose path is calculated to culminate at the target

location, Figure 9. Inputs and outputs are the same as for the bullet and bomb classes above.

Figure 8: Path of a bomb

path of a bom
b

initial position

final position

initial velocity

vz vzo
gt–=

xz xzo
vzo

t 0.5gt2–+=
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Equations that govern the behavior of ballistic projectiles are much the same as

equations for the bomb. The only difference between the two classes are the initial

conditions, that is, the ballistic projectile normally originates from the ground and the bomb

from the air.

a.  Artillery

The path of the artillery round is the same as for the general ballistic round.

The difference is in the given conditions. For the ballistic, we are given the initial velocity,

and for the artillery we are given the artillery and the target positions.

Inputs:

P1(x1, y1, z1) initial position of the artillery.

P2(x2, y2, z2) initial position of the target.

Outputs: the same as for the bullet.

In the following case, we only know two positions: P1 and P2. We do not

know the artillery round’s initial velocity, see Figure 8. If we did know the artillery’s initial

velocity, the way to find the position at time t, P(t), would be the same as for the bomb or

ballistic. So the approach is to find the initial velocity first. Once we have the initial

condition, the equations that govern the behavior of the velocity and the position at a later

time are the same as the equations for the bomb or ballistic.

initial position final position

in
iti

al
 v

el
oc

ity

Figure 9: Path of the ballistic
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The following equations Eq 35 through Eq 37 are used to find the required

nozzle velocity of the artillery round.

Eq 35

Eq 36

Eq 37

In Eq 35 through Eq 37, the unknown variable on the right is the time, t, so

the programmer can code the implementation to query the user for that value. In Eq 37, the

top right part takes the absolute value to ensure that the velocity in the z direction is positive

(going up).

5.  Rocket

A rocket is a type of munition that burns fuel, shooting it rearwards to gain velocity

and altitude, hence distance (Figure 11). At a certain burn-out point, the rocket will have

expended its fuel. From that point, it enters free-fall as a ballistic projectile. Its subsequent

path is based on the velocity and position gained in the burn phase. Therefore, there are two

P1 P2

Figure 10: Artillery’s round path

vxO

x xo–

t
--------------=

vyo

y yo–

t
--------------=

vzo

z zo 0.5gt2+–

t
--------------------------------------=
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set of equations governing the rocket’s velocity and position, the first applying to the burn

phase, the second to the free-fall phase.

Inputs:  all the variables on the right side of the following velocity and position

equations.

Outputs: the same as before: velocity, position, and angular position.

Equation 38 states that the rate of change of the momentum (P = mv) is equal to the

sum of the external forces that act on the object.

Eq 38

Based on Eq 38, we can derive the equation for the motion of an object with lost

mass, Eq 39, where m is mass, V is velocity, u is the velocity of the fuel, t is time, and F is

the external force. Eq 39 states that mass multiplied by the rate of change of velocity, minus

velocity multiplied by the rate of change of mass, equals the external force that applies to

the object.

p1  p2

burn-out point
free fall region

rocket

Figure 11: Rocket’s path

td
d

P Fext∑=
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Eq 39

From Eq 39, and if we assume that  where r, rate of lost mass, is a constant,

we can derive the velocity and position equations. The derivation can be found in many

math and physics books [MART84][HALL78][BOYC77].

Eq 40 through Eq 42 following are the velocity equations for the rocket.

Eq 40

Eq 41

Eq 42

Eq 43 through Eq 45 following are the equations for the position of the rocket.

Eq 43

Eq 44

Eq 45

Where:

m
td

d
V u

td
dm

– Fext=

td
dm

r=

vz vzo
– uz 1 rt

mo
-------–

 
 
 

gt–ln=

vx vxo
– ux 1 rt

mo
-------–

 
 
 

ln=

vy vyo
– uy 1 rt

mo
-------–

 
 
 

ln=

xz xzo
– vzo

t
uzmo

r
------------- 1 1 rt

mo
-------–
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mo
-------–
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 
 
  1

2
---gt2––=

xx xxo
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uxmo
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-------–
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 
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 
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If we assume that fuel mass will burn-out at a certain time, as in Eq 46, we can

derive the burn-out velocity and the burn-out position as in equations Eq 47 through Eq 52.

Eq 46

Where:

The following equations Eq 47 through Eq 49 give the burn-out velocity of the

rocket.

Eq 47

Eq 48

Eq 49

The following equations Eq 50 through Eq 52 give the burn-out position of the

rocket.

mo total mass of the rocket=

r rate of lost mass=

g gravitational constant, 9.81m/s2=

vio
xio
, respective initial velocity and position=

t time=

mfuel mo m–
rocket

rt= =

mfuel fuel mass=

mrocket mass of the bare rocket=

vz vzo
– u– z 1

mf
mr
------+

 
 
 

g
mf
r

------–ln=

vx vxo
– u– x 1

mf
mr
------+

 
 
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ln=

v
y

v
yo

– u–
y

1
m

f
m

r
------+

 
 
 

ln=



31

Eq 50

Eq 51

Eq 52

a.  Ballistic missile

The inter-continental ballistic missile (ICBM) is a type of weapon which

uses rocket thrust and has the capability of flying directly to a given target position, Figure

12. The equations governing its velocity and position are the same as for the artillery class.

We determine the ICBM initial conditions. Then we use the parent class velocity and

position equations to find the velocity and position at a later time.
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p1  p2

burn-out point
free fall region

rocket

Figure 12: Rocket shot at predetermined target.

Given: p1 and p2
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6.  Guided missile

A guided missile is a projectile with the capability of chasing and homing

in on a moving target, Figure 13. Our general solution for the moving target will apply to

the fixed target case, too. In the moving target case, the missile must change its velocity

vector every delta time,  = t2 - t1. At the end of each delta time, we know the position

and velocity of both the missile and target. We use that as the initial conditions for the next

time interval. We repeat the process until the missile is within a detonation range from the

target.

The following equation Eq 53 computes the new missile velocity for every .

Eq 53

Where:

p2,t1

p2,t2

p1,t1 p1,t2

Figure 13: Missile chasing target
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----------------------------------------------------Speed=
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Following is the position equation for the guided missile

Eq 54

Where i = is the respective direction,  = next position,  = current position

direction,  = velocity at current position,  = acceleration, and  = given delta time.

Remember that  is recalculated every .

D. RESULTS

As in Chapter 3, each case of the munitions class is coded and tested separately. The

code for each case resides in separate header and body files. This divide-and-conquer

strategy facilitated the coding and testing process tremendously. Potential problems and

errors were contained within sections of code of manageable size. Once the problems of the

parent class are ironed out, those parent class attributes inherited by the child classes need

not be validated and debugged again for each child class. With the C++ hierarchy structure,

problems are isolated and localized, and not propagated.

The following two pseudo-code procedures outline the testing of the munitions

subclasses, and the guided missile class which is handled separately:

Following is the main function used to test the munition subclasses:

------------begin main procedure--------------

1. Instantiate an object

2. While object does not hit the target, or the ground
a. Move the object
b. Get the object position (for rendering)
c. Get the object velocity

vmissile new missile velocity=

Pmissile missile position=

Speed speed of the missile from previous delta time=

xi xio
vio

∆t 0.5ai ∆t( ) 2+ +=

xi xio

vio
ai ∆t

vio
∆t
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d. Get the object angular position (for rendering)
e. Check whether the object has hit the target or ground

(if it hits, exit the loop; if not, continue)
f. Check whether the object has missed the target

(if so, exit the loop)
--------- end while loop-----------------

-------------end main procedure----------------

The following loop describes the coding and testing of the guided missile class:

----------------begin main procedure--------------------

1. Set up initial conditions (delta time, missile position, target position)
2. While the target has not been hit

a. Compute missile velocity, angular position
b. Move the missile for a given delta time
c. Get the next target position (from DR)
d. Get the next speed (constant or from speed curve)
e. Determine if the missile hit the target within a given range

(if so, exit the loop)
3. Return to Step 2

------------------end main procedure-----------------------

Note: If the delta time is not small enough and the detonated range not large enough,

the definition of a hit required by step e will never be satisfied.

As the two pseudo-code procedures above describe, the munition’s state is started

with initial conditions and then recalculated after a predetermined small delta time, with

checks of whether the target has been hit or the munition has impacted the ground. If one

of those conditions is true, the loop is exited and the procedure terminated.

In summation, the code works as designed. Each class returns its output in a well-

behaved manner. The code is reliable, and the performance excellent, even on the low-end

Intel 80486-based PC used for testing.
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V.  ENGINES

A. OVERVIEW

This chapter describes mathematical models for engine power. The actual

implementation of engine models such as the gas turbine, motor, and rocket are not

essential to the virtual world of NPSNET. However, it is important that the simulation

looks and feels right to the user. Therefore, our goal was to design our equations only to a

level of detail that will have a beneficial effect on the simulation.

Figure 14 shows all of the mathematical models which will be discussed in this

chapter. Depending on the model we use, engine speed will follow the mathematical curve

precisely, either the logarithmic, sinusoidal, linear, exponential, rocket, or quadratic curve.

Note that we are only concerned with increasing or decreasing speed. The direction

of any object employing our engine model depends on user input during the simulation.

In Figure 14, s represents the speed of the entity and r is the range of the input

throttle. Variable r represents, for instance, pressing the gas pedal in a car. As r increases,

so does the speed of the car and vice versa.  is the maximum speed that the object can

Figure 14: Models for Engines
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attain, and  is the maximum range number that the user will supply. For example, r

might run from 0 to 100.

B. DESIGN

The engine class is the base class. It contains the common variables the subclasses,

which are derived from the base class, will use. Most subclasses have two cases

implemented, one each for increasing and decreasing speed. I and D in Figure 15 shows

that all subclasses implement both cases, except for the rocket, which will not follow the

same curve for decreasing speed.

C. IMPLEMENTATION

Following are the symbols we use to describe the mathematical model for engine

speed:

s = speed, which extends from 0 to

r = range, which extends from 0 to

a, b, c, d are constants

rmax

Engine

Figure 15: Engine Classes
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Our goal is to find the simplest equations that exhibit the characteristics of

increasing and decreasing speed for each subclass. Those equations must satisfy the two

initial conditions, (0, 0) and .

We use r as an input number which, when processed through the appropriate

equation, maps to a value in the speed range (Figure 16). For example, with equation

, if r equals 2, then s is 4. In the code, the toolkit user chooses engine type and

specifies  and . After that, the appropriate s is returned for any given r, and vice

versa.

Following is the derivation of possible equations to represent increasing and

decreasing speed:

1.  Increasing and decreasing speed

a.  Linear

In this case, engine speed follows a simple linear equation. Consider the

linear equation for speed

Eq 55

Where slope is the slope of the linear curve. In this case, with two initial

conditions, (0, 0) and , our speed equation is (See Figure 17 and Eq 49):

smax rmax,

s 2r=

smax rmax

r max

s max

0

0

Figure 16: Range to speed mapping

s a– slope r b–( )=

smaxrmax,( )



38

Eq 56

The range equation is:

Eq 57

b.  Quadratic

In this case, the speed equation can follow two quadratic curves--the solid

and dotted lines in Figure 18--to increase or decrease speed.

s
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rmax
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Figure 17: Linear approximation
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We can derive the speed equation for the solid line as follows:

With the general quadratic equation , then according to Figure 10

with our two initial conditions (0, 0) and , we have

so . Then the speed equation is:

Eq 58

The equation for the range is:

Eq 59

We can also derive the speed equation for the dotted line as follows.The

general quadratic equation is . With two initial conditions,

(0, 0) and , then . The speed equation is:

Eq 60

The range equation is:

Eq 61

s ar2=

smaxrmax,( ) smax a rmax( ) 2=

a
smax

rmax( ) 2
---------------------=

s
smax

rmax( ) 2
---------------------r2=

r
rmax( ) 2

smax
---------------------s=

s smax– a– r r max–( ) 2=

smaxrmax,( ) a
smax

rmax( ) 2
---------------------=

s smax–
smax

rmax( ) 2
---------------------– r r max–( ) 2=

r
rmax( ) 2

smax
--------------------- smax s–( )– rmax+=
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Speed can increase in a higher degree polynomial but, though

straightforward, is not implemented here owing to lack of necessity. The general format for

coding and using the code would be the same.

c.  Logarithmic

In this case, speed increases along a logarithmic curve. The general equation

for this case is:

Eq 62

Based on Eq19 and two initial conditions, (0, 0) and , we

derive , which is true and then

. So our speed equation is:

Eq 63

The range equation is:

s a 1 r+( )log=

r

s max, r max

0, 0

Figure 19: Logarithmic approximation
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Eq 64

d.  Exponential

In this case, speed increases along an exponential curve. The general

equation is , with two initial conditions of (0, 0) and . We

derive  and  then . So our equation

for the speed is:

Eq 65

The range equation is:

Eq 66

r e
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e.  Sinusoidal

In this case, speed follows the sinusoidal curve. See Figure 13.

Eq 67

Where , we can map input  to  easily with equation

. The range equation is:

Eq 68

f.  Rocket

In this case, the rocket model in Chapter 4 governs the behavior of the speed

curve. In general, the speed equation for the rocket is:

Eq 69

s smax θsin=

0, 0

x max,

Figure 21: Sinusoidal approximation
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Where s = speed, u = fuel speed, t = rate of burning fuel, r = range of input,

 = total mass of the object, and rt = mass of the fuel.

Figure 22 describes the behavior of the speed curve. The speed increases

very rapidly to a very large value. Initial conditions are  and .

We use Eq 62 to implement the code as follows. The programmer supplies

as input u, , r, and .From these initial values and by controlling the u value, we

assign to a value we want. With known values of , and the two equations,

Eq 62 and Eq 63, we can now simulate the rocket engine.

The range equation is:

Eq 70

mo
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Figure 22: Rocket approximation
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2.  Increasing and decreasing speed on different curves

Usually, for the sake of simplicity, the decreasing speed curve for an engine is the

same as the increasing case. But we can always use different speed curves on the same

engine. One of the problems we encountered is in how to represent the input range of the

throttle to the user. If we use the two curves in Figure 23, then for one value of s1 we have

two range values, r1 and r2. Which range value, then, do we return to the user? One solution

is to only return the r value of the increasing speed curve. Then when engine speed

decreases, we map the decreasing speed to the equivalent increasing speed, and from that

speed value and the range equation of the increasing case, we can find value r.

D. RESULTS

The code is organized into a base class and dependent subclasses. The base class

holds the variables the other subclasses will use, such as maximum speed, maximum range,

speed, and range. Each subclass has two central functions. One,get_speed(), returns the

speed for a given range value, and the other,get_range(), returns the range for a given

speed.

To incorporate the code to use for each case, the user includes a specific set of files.

For example, to use the linear engine curve, include:

Figure 23: Decrease on different path
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- engine.cpp

- linear.cpp (the name of the curve to use)

- a main function

The code was tested separately for each curve. Two loops were created for return

values of speed and range. For return speed values, the range value extended from 0 to 100

in steps of 10. For range return values, the speed value extended from 0 to 1000 in steps of

100. See the code in Appendix C for details.

For the rocket engine model, the programmer should be careful with the given value

of fuel speed u, rate of burning fuel t, and the total mass. Remember that t is the

total fuel, it should be about half of the total mass . The best value for maximum range

 is about 100, and use a fuel speed value u to control the maximum speed value.

The return values for each case behave according to the name of the case. For

example, the linear model returns values in both speed and range linearly, and the

exponential model returns speed values exponentially and its range values logarithmically

as its equations describe.

In general, all models worked very well. The particular case is the rocket engine.

With its physically-based model, it should be used for all jet engines in the simulation to

enhance the realistic effects of our simulated world.

With the division of separate subclasses branching from the base class, the usage,

testing, and enhancement of the code is straightforward. In summation, the models work

very well in our simulated world.

mo rmax

mo

rmax smax
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VI.  RESULTS AND CONCLUSIONS

A. RESULTS

The divide-and-conquer method was used to code and test the implementation

described in this thesis, that is, each class was written in a separate file, segregated into a

self-contained chunk of code. Therefore, potential problems and bugs were localized and

the development process was reduced to small, manageable, straightforward steps. Once a

particular class was validated, it required no further examination. Its derived classes did not

return further problems in exchange for the benefits they received. Instead, they gained the

benefit of being built onto a solid foundation. In general, the code is reliable, performs well,

and is easy to use. All of the interface functions have a standardized format, and follow a

standard naming convention.

1.  Dead Reckoning

The design and implementation of the nine DR algorithms in this thesis are

complete in the sense that they cover all possible cases in both world and body coordinates.

In each perspective coordinate system, the implemented algorithms cover cases ranging

from the simplest, a fixed entity, to the most detailed, an entity with rotation, velocity, and

acceleration.

Most equations used to compute the results are simple, except for body coordinate

algorithms 7 and 8, which are somewhat long and complex. However, all algorithms were

coded with an efficiency as near to optimal as possible. For more examination of the

applicable uses of these algorithms, consult the ARPA study for more details. [IST93]

2.  Munitions

The munitions class in this thesis formed a basis for most of the munitions. It

accounts for the bullet, bomb, ballistic, artillery, rocket, and guided missile. Further, the

user can combine these munitions to form different types of weapon with each distinct

munition performing a single phase of some composite weapon. For example, the bomb
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model could be used to drop a missile from an airplane, and then when it reaches a certain

altitude, the guided missile model could take over to govern a final stage wherein the

missile seeks a target.

The guided missile mode of operation can be tail-chase or predicted-intercept

depending on what kind of target position the user provides to compute the missile velocity

vector. If the user provides the current position of the target, then the missile mode will be

tail-chase, because the target will have moved to the next position at the next delta time. If

the user provides the next dead reckoned position of the target, the missile mode will be the

predicted-intercept missile.

Furthermore, the guided missile class can couple with any of the engine models in

Chapter 5. Recall that the direction of the missile is based on the position of the missile and

the position of the target. If the speed from the engine equation for every delta time is

supplied to the munition, then the missile will chase after the target with the increasing

speed of the engine curve.

The rocket model is based on Newton’s equation. Its velocity and position equation

are final. Together with the bomb equations, the rocket equations will form the basis for the

ballistic missile model. However, the ballistic missile model was not implemented due to

time constraints and its complexity.

3.  Engine

Except for the rocket model which is physically-based, the remaining engine

models are mathematically-based. But thorough testing of all the models reveals negligible

difference between physically- and mathematically-based models.

In physically-based models, we use Newton’s force law to get a mathematical

expression of the speed curve, whereas in mathematical models, speed curves are encoded

based on popular mathematical equations. In both cases, the initial condition (0, 0), the

maximum speed, and the maximum range are used as boundary values. Our model becomes

a boundary value problem, that is, the fitting of a curve between two points.
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In testing, since the quadratic or exponential curve behaves very much the same as

the logarithmic rocket curve, we can use them to substitute for the rocket speed curve.

Overall, our models behaved realistically when tested.

B. CONCLUSIONS

The code described in this thesis keeps each separate class independent from each

other. It is short and the performance fast. The names of the functions are standardized,

making the toolkit easy to use. The toolkit was tested thoroughly to ensure reliability.

The work of this thesis cannot be considered groundbreaking, though. But it does

craft existing knowledge into an organized and coherent piece of work. Its design and

implementation are well thought out, and its performance in the current system is excellent.

Furthermore, it lays a solid foundation for further study.

C. SUGGESTIONS FOR FUTURE WORK

After building the toolkit, the advantage of concise, independent functions that can

be coupled with any entity models, was clear. We suggest that the work for suspension,

control, steering models, and other dynamic entity attributes, be implemented in a manner

consistent with the toolkit.
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